Около шести лет назад международная группа учёных при участии исследователей из «Сколтеха» разработала полностью оптический универсальный логический вентиль — перспективную альтернативу электронным транзисторам. Такие оптические переключатели способны работать при крайне низком энергопотреблении и в десятки, а то и сотни раз быстрее кремниевых аналогов. В новой работе учёные протестировали устройство на пределе его возможностей и выявили ключевые ограничения.

Российские и немецкие учёные разогнали оптический транзистор до 240 ГГц

Сегодняшним компьютерам нужны всё более быстрые процессоры, однако традиционная полупроводниковая электроника сталкивается с физическими пределами: при высоких тактовых частотах компоненты перегреваются. Решением могут стать оптические системы, способные работать в тысячу раз быстрее. Исследователи из «Сколтеха» и немецких институтов продолжили развитие своей ранней разработки и изучили, как повысить её быстродействие.

Созданный ранее оптический вентиль, реализующий универсальную логическую операцию NOR, основан на поляритонных конденсатах — квазичастицах, объединяющих свойства фотонов и экситонов. В отличие от электронов, фотоны не взаимодействуют между собой, поэтому для управления логикой применяются экситон-поляритоны. Такие устройства работают при комнатной температуре, не используют электрический ток и потому лишены связанных с ним ограничений — потерь энергии и сравнительно низкой скорости.

Новая работа, опубликованная в журнале Physical Review B (а также доступная на arXiv.org), посвящена изучению остаточных эффектов в работе логического элемента, ограничивающих его скорость. В частности, исследователи рассмотрели явление бимолекулярного гашения — процесса, при котором взаимодействие между поляритонами приводит к потерям, замедляющим переключение между логическими состояниями 0 и 1.

«Скорость работы поляритонных транзисторов определяется тем, насколько быстро могут выполняться последовательные логические операции. Для этого требуется достаточное количество поляритонов, оставшихся от предыдущего состояния «1», чтобы обеспечить чёткое различие между логическими состояниями «1» и «0». По мере увеличения рабочей частоты остаточные поляритоны от первого импульса могут непреднамеренно усиливать второй импульс, создавая, таким образом, паразитное усиление при некоторой ненулевой временной задержке между последовательностями импульсов», — поясняют авторы работы.

Согласно полученным данным, логический вентиль способен работать на частоте до 240 ГГц — это один из самых высоких показателей для оптических логических элементов. Как отметил первый автор статьи, аспирант программы «Физика» в «Сколтехе» Михаил Миско, для достижения такой частоты необходимо учитывать влияние делокализации поляритонов, приводящей к дополнительным потерям.

Кроме того, учёные установили, что для эффективного функционирования устройства длительность управляющих импульсов должна быть короче, чем время характерных потерь в системе. Это открывает путь к более точному управлению поляритонной динамикой и расширяет возможности оптических логических схем.

Полученные результаты подтвердили теоретические модели и позволили сопоставить данные из различных экспериментов. Это ещё один важный шаг на пути к созданию оптических компьютеров, которые смогут работать в сотни раз быстрее современных электронных систем.

От admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *